Linear and parabolic relaxations for quadratic constraints
نویسندگان
چکیده
This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods for global optimization and constraint satisfaction. This is done by generating powerful linear and parabolic relaxations from a quadratic constraint and bound constraints, which are then subject to standard constraint propagation techniques. The techniques are often applicable even if the original box is unbounded in some but not all variables. As an auxiliary tool – needed to make our theoretical results implementable in floating-point arithmetic without sacrificing mathematical rigor – we extend the directed Cholesky factorization from Domes & Neumaier (SIAM J. Matrix Anal. Appl. 32 (2011), 262–285) to a partial directed Cholesky factorization with pivoting. If the quadratic constraint is convex and the initial bounds are sufficiently wide, the final relaxation and the enclosure are optimal up to rounding errors. Numerical tests show the usefulness of the new factorization methods in the context of filtering.
منابع مشابه
Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs
Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...
متن کاملTrust Regions and Relaxations for the Quadratic Assignment Problem
General quadratic matrix minimization problems, with orthogonal constraints, arise in continuous relaxations for the (discrete) quadratic assignment problem (QAP). Currently, bounds for QAP are obtained by treating the quadratic and linear parts of the objective function, of the relaxations, separately. This paper handles general objectives as one function. The objectives can be both nonhomogen...
متن کاملOn convex relaxations for quadratically constrained quadratic programming
We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative methodology based ...
متن کاملSimplified semidefinite and completely positive relaxations
This paper is concerned with completely positive and semidefinite relaxations of quadratic programs with linear constraints and binary variables as presented in Burer [2]. It observes that all constraints of the relaxation associated with linear constraints of the original problem can be accumulated in a single linear constraint without changing the feasible set of either the completely positiv...
متن کاملA fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations
We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between both a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 65 شماره
صفحات -
تاریخ انتشار 2016