Linear and parabolic relaxations for quadratic constraints

نویسندگان

  • Ferenc Domes
  • Arnold Neumaier
چکیده

This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods for global optimization and constraint satisfaction. This is done by generating powerful linear and parabolic relaxations from a quadratic constraint and bound constraints, which are then subject to standard constraint propagation techniques. The techniques are often applicable even if the original box is unbounded in some but not all variables. As an auxiliary tool – needed to make our theoretical results implementable in floating-point arithmetic without sacrificing mathematical rigor – we extend the directed Cholesky factorization from Domes & Neumaier (SIAM J. Matrix Anal. Appl. 32 (2011), 262–285) to a partial directed Cholesky factorization with pivoting. If the quadratic constraint is convex and the initial bounds are sufficiently wide, the final relaxation and the enclosure are optimal up to rounding errors. Numerical tests show the usefulness of the new factorization methods in the context of filtering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex quadratic relaxations of nonconvex quadratically constrained quadratic programs

Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...

متن کامل

Trust Regions and Relaxations for the Quadratic Assignment Problem

General quadratic matrix minimization problems, with orthogonal constraints, arise in continuous relaxations for the (discrete) quadratic assignment problem (QAP). Currently, bounds for QAP are obtained by treating the quadratic and linear parts of the objective function, of the relaxations, separately. This paper handles general objectives as one function. The objectives can be both nonhomogen...

متن کامل

On convex relaxations for quadratically constrained quadratic programming

We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative methodology based ...

متن کامل

Simplified semidefinite and completely positive relaxations

This paper is concerned with completely positive and semidefinite relaxations of quadratic programs with linear constraints and binary variables as presented in Burer [2]. It observes that all constraints of the relaxation associated with linear constraints of the original problem can be accumulated in a single linear constraint without changing the feasible set of either the completely positiv...

متن کامل

A fast branch-and-bound algorithm for non-convex quadratic integer optimization subject to linear constraints using ellipsoidal relaxations

We propose two exact approaches for non-convex quadratic integer minimization subject to linear constraints where lower bounds are computed by considering ellipsoidal relaxations of the feasible set. In the first approach, we intersect the ellipsoids with the feasible linear subspace. In the second approach we penalize exactly the linear constraints. We investigate the connection between both a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Global Optimization

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2016